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Abstract
The advent of Industry 4.0 has revolutionized the manufacturing landscape,
introducing advanced technologies such as the Internet of Things (IoT) to optimise
production processes. This book chapter proposes a comprehensive digital twin
framework that harnesses the power of IoT technologies, specifically sensor data, to
enhance efficiency and performance in process industries. Our proposed framework
is designed to leverage real-time sensor data from bioprocesses and combine it
with manually collected data to create a virtual representation of the real process.
This envisioned digital twin not only mirrors the current state of the system but
also enables predictive analysis and proactive decision-making. We discuss how
using the notion of process, as defined in the business process management area,
enables the integration of various components of bioprocesses and how IoT-enabled
technologies can create a real-time connection between the physical and virtual
processes. We also discuss the challenges of realizing the proposed digital twin
and offer potential solutions to those challenges. We demonstrate the applicability
of the proposed framework via a case study with a large pharmaceutical company.
In particular, in the context of predictive process monitoring, we show the current
baseline can be outperformed if our framework is adopted.
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1 Introduction
A bioprocess refers to a series of steps or operations designed to harness living
organisms (such as bacteria, yeast, or mammalian cells) or their cellular components
to produce desired products or carry out specific biochemical transformations. These
processes are commonly employed in various industries, including pharmaceuticals,
biotechnology, food and beverage, agriculture, and environmental remediation. In
bioprocessing, living organisms are cultivated under controlled conditions, typically in
bioreactors or fermentation tanks, where they are provided with nutrients and other
necessary conditions for growth and metabolism. The organisms then produce the
desired products through metabolic pathways or biochemical reactions. Bioprocesses
can involve a wide range of activities, including cell culture, fermentation, purification,
and downstream processing.

Typically, bioprocesses are composed of several unit operations which are executed
sequentially. The process starts by thawing vials of frozen microorganisms. The cells
are then grown in a cell culture where they are fed nutrients to help growth and target
protein production. The cell culture unit operations are known as upstream processing.
The goal of upstream is to produce as much high-quality product as possible. After the
production steps, several purification steps are carried out to remove contaminants and
purify the products. These steps are collectively known as downstream processing. The
last operation after the downstream steps is known as formulation. In the formulation
step, the product of interest is prepared as a substance that can safely be used by
customers. Figure 1 shows the upstream, downstream, and formulation unit operations.

Fig. 1: Unit Operation of a typical bioprocess

In recent years, bioprocess industries have experienced a paradigm shift towards
the adoption of digital technologies to streamline and optimize bioprocess development.
With the increasing complexity and diversity of bioproducts, there is a pressing need
for advanced methodologies to effectively capture, analyze, and optimize the intricate
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processes involved in bioproduction. Digital twin technology [1] has emerged as a
promising approach to address these challenges by creating virtual replicas of physical
systems, enabling real-time monitoring, analysis, and optimization. However, the
application of digital twins in the realm of bioprocess development remains relatively
unexplored and is often confined to a single step in the bioprocess. This results in
multiple disconnected digital twins that do not capture the relationship between the
various unit operations. This makes optimization and long-term decisions challenging.

This book chapter presents a novel digital twin framework encompassing all unit
operations in a typical end-to-end bioprocess. The novelty of our framework lies in the
integration of concepts and techniques from business process management and process
mining, which are widely used for analysis and improvement of business processes in a
variety of industries. Using these concepts, it is possible to represent bioprocesses as
a series of human and biological steps, as well as leverage data collected during the
execution of the bioprocesses to identify improvement opportunities.

In the proposed digital twin framework, two types of improvements are considered:
short-term and long-term. Short-term improvements are done on the fly during process
execution. For example, using a controller that learns its strategy from the digital
twin’s process control component, a short-term strategy is to dynamically adjust the
parameters to keep the process in stable condition. Long-term tactical improvements
are those that can be derived from the digital twin and are implemented in future
instances of the process. For example, using the digital twin, one might determine an
optimized feeding strategy which is then used in future bioprocess executions. Our
envisioned digital twin should be equipped to address both types of improvement as
will be discussed later in the chapter.

The rest of this chapter is organized as follows. We begin by reviewing the current
literature on digital twins in both process mining and bioprocessing domains in
Section 2. We then present the envisioned framework, its various components, and use
cases in Section 3. In Section 4, we describe the challenges of achieving the envisioned
framework. We present an example use case and partial implementation of the proposed
digital twin as a proof of concept in Section 5, and finally, conclude the chapter in
Section 6.

2 Related Work
The related work reviewed in this section is divided into two subsections. Subsection 2.1
reviews existing works on digital twins of organizational processes. Existing works on
digital twins of bioprocesses are reviewed in Subsection 2.2.

2.1 Organisational Digital Twins
Since their conception, digital twins [1] have been adopted in various settings. One
such setting is the use of Digital Twin technology to represent organizational business
processes. While a digital twin is a virtual representation of real-life phenomenon that
is indistinguishable from its real-life counterpart, van der Aalst et al. [2] describes
digital model and digital shadow as other virtual representations that vary in their
level of integration with the real-life phenomena they represent. Figure 3 shows the
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difference between 1. digital model, 2. digital shadow, and 3. digital twin. A digital
model is created using manual and offline collected data from a real process. There
is no real-time connection between reality and the digital model. The dotted lines
between reality and the digital model represent the loose coupling between them. A
digital shadow goes one step further in connection to reality. It is synchronized with
reality by having real-time data fed into it (solid arrow from reality to the digital
shadow), however, any insights and decisions resulting from the model are fed back
to reality offline and manually. The digital twin goes further than digital shadows by
having an online feedback loop connecting the digital twin to reality. Most existing
process mining techniques are either digital models or digital shadows, while digital
twins currently remain aspirational.

Reality Reality Reality

Digital
Shadow

Digital
Twin

Digital
Model

Fig. 2: Differences between a digital model, a digital shadow, and a digital twin
(Figure adapted from [2])

The history of the emergence of the digital twin concept is explored in [3]. The
authors explore the role of digital shadows as building blocks for a broader digital
twin. Additionally, it builds a connection between digital shadows and mathematical
(or physical) models by showing examples of how such models are currently used in
building digital shadows. However, such work is mainly concerned with the conceptual
link between data management and algorithmic services and is not concerned with the
challenges of implementing digital shadows and organizational twins.

Achieving a digital twin of organizations is highly desirable since it provides a virtual
environment where different actions and decisions can be tested without sacrificing
quality or wasting resources in the real world. Many works using the notion of a process
to build a digital replica of a workflow have been proposed in the literature. For example,
in the work by van der Aalst et al. [4], the authors discuss the limitations of modelling
paradigms such as Turing machines and Markov chains. Such models are limited in
their expressive power – e.g., they cannot capture concurrency between activities, a
key aspect of organizational business processes – and therefore, are limited in their
capability to create a digital twin of an organization. Therefore, the authors propose
the use of more sophisticated process modelling languages, such as object-centric Petri-
nets [5], to represent the workflow and interaction of objects within organizations. The
benefits of object-centric Petri nets in digital twinning are further explored in [6].

In another work, Park and van der Aalst [7] present a digital twin of an organization
as the digital replica of a production process or the entire organization. Their proposed
digital twin includes an interface model representing the business process and its
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supporting information systems. This representation is in the form of a process model
(e.g., a Petri net). The interface model presents the process analyst with the current
state of the process and highlights bottlenecks and configurations. The analyst then
defines process constraints and suitable actions. The constraints and actions are fed
into an action engine that continuously monitors the processes and triggers actions
based on the monitoring results. Another work by Park et al. [8] uses digital twins of
organizations to assess the effect of information system updates in a process-aware
manner. In this work, they define digital twins interface models as object-centric Petri
nets. Updates in the information system are modelled as different configurations of
the Petri net model.

The connection between process prediction and digital twins is explored in an article
by Brockhoff et al. [9]. In this work, the digital twin is defined as a software system
that actively represents, controls, and optimizes a cyber-physical system. This digital
twin incorporates process mining services such as process discovery and conformance
checking components to derive digital shadows and actionable insights. While this
work mentions extraction of underlying processes using continuous measurements,
they do not discuss the challenges of such extractions and possible solutions to these
challenges, which is the focus of this book chapter.

Bano et al. [10] present a digital twin cockpit that is process-aware. They define
this cockpit as the user interaction part of the digital twin that can handle processes
related to the physical object. Similar to our proposed approach, they incorporate
sensor data. They use the sensors to create events and extract event logs from sensors
installed in a healthcare setting. However, their work also deals with discrete events
(e.g., a nurse entering the patient’s room) whereas in our work, we aim to create digital
twins of objects involving processes with no discrete events.

Biological processes and their modelling paradigms are mentioned in the work by
Becker and Pentland [11]. In this work, they propose to use inspirations from biological
models such as regulatory network modelling and incorporate those inspirations in
creating digital twins of organizations. However, they do not explore modelling of
bioprocesses themselves as we do in this work.

The works mentioned in this section offer valuable insights into how process mining
concepts and methodologies can be used in creating digital twins of processes and
organizations. However, these works mainly focus on the complexities of various inter-
related processes that exist within organizations., while in this book chapter we seek
to use the notion of process and harness the power of process mining techniques
to deal with the challenges of twinning biological processes and their interaction to
organizational workflows.

2.2 Bioprocess Digital Twins
In recent years, digital twins have gained traction in the field of bioprocess development.
As mentioned in Section 1, bioprocesses are comprised of several unit operations
each serving a different aim in the development of the bioprocess. Each of these unit
operations has its unique associated challenges, such as heterogeneous data types,
varying degrees of uncertainty, and complexity of the steps involved. Therefore, the
majority of existing works in the bioprocessing field focus on a single unit operation
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rather than the end-to-end process. In this section, we review existing work on digital
twinning in the bioprocess development field grouping them by the unit operation
targeted.

2.2.1 Seed Train
After thawing up a small vial of cells, the first step is to increase their number in a
unit operation known as the seed train. There are several challenges such as complex
cell metabolism, batch-to-batch variation, the uncertainty of cell behaviour, and the
effects of cultivation conditions. Rodriguez and Frahm [12], outline the necessities of
digitizing the seed train step. However, their envisioned digital twin is a mechanistic
model fit to observable parameters that predicts key performance indicators of the seed
train, such as viable cell density. Additionally, their digital twin does not automate
decision making. Decisions such as passaging strategy are still made manually using the
prediction model. They also explore the role of data-driven strategies and uncertainty
estimation.

2.2.2 Production Bioreactor
This step comes after cell expansion and is one of the more complex unit operations
due to its high uncertainty [13]. Consequently, the majority of digital twin literature
in the bioprocessing field focuses on this step.

Park et al. [14] propose a digital twin framework that leverages process analytical
technologies (PAT). In particular, they explore new data collection technologies such
as soft sensors, and their impact on achieving realtime synchronization between the
real process and the digital twin. Their envisioned framework considers the digital twin
to be a mechanistic or data-driven model or a hybrid of the two. However, this view is
limiting because such models are developed for single unit operations. To the best of
our knowledge, no mechanistic or data-driven model presents the process end-to-end.
Therefore, using this framework, we would need to have multiple unconnected digital
twins for each unit operation, making optimization of the entire process challenging.
Nevertheless, this framework is widely adopted in the bioprocess literature with many
works proposing to create digital twins of the bioreactor step [15–18].

2.2.3 Downstream Purification
The downstream steps occur after the bioreactor step to separate the product of
interest from other byproducts and remove impurities. Khuat et al. [19] identify typical
problems addressed in the downstream process step that benefits from digitization
and twinning:

• Monitoring and prediction problems in the capture chromatography step
• Monitoring and prediction problems in the polishing chromatography step
• Control of a chromatography process
• Scaleup and prediction problems in Filtration
• Optimisation of purification sequences

A rich body of literature proposes to tackle the problems stated above. For instance,
Tiwari et al. [20] propose digital twins as a means to design a control strategy for the

6



chromatography step. Similar works propose data-driven approaches for prediction
problems in chromatography [21], scale-up problems in filtration [22], and various
optimization problems in the downstream [23, 24]. In the majority of these works,
building a real-time connection between the models and the real process is not clear.
Moreover, the models are developed for various purposes using heterogeneous data
sources. Therefore there is no clear link between the various steps of the downstream.

2.2.4 Generic Digital Twin Frameworks
It is clear that while having unit operation digital twins is very useful for solving various
tasks, it is not sufficient for optimizing the entire process. Another line of work centers
on a more generic idea of digital twinning. For instance, Taylor et al. [25] suggest holistic
process modelling as the main engine for digital twins. They suggest improvements
such as combining small and large-scale data for model building, improving uncertainty
intervals, and establishing extrapolation procedures for non-controllable parameters.
However, they do not specify a modelling paradigm for multi-unit operation digital
twins.

In [26, 27], the authors investigate digital twins for design of experiments. Their
goal is to reduce the number of experiments by identifying critical process parameters
via in-silico modelling. Another work by Sokolov et al. [28] argues for the use of hybrid
modelling (models consisting of both data-driven and mechanistic components) as the
enabler of digital twins. This opinion is supported in other works as well [29, 30]. None
of the works mentioned above, however, propose any methodology for connecting the
various model components and representing the end-to-end process as a unified entity.
We aim to address this gap via the framework proposed in the next section.

3 Framework
In the realm of process industries that utilize biologics, the digital twin concept has
emerged as a transformative methodology, aiming to revolutionize processes to enhance
efficiency, quality assurance, and adaptability. In this section, we clarify the context
and scope of the digital twin and propose a conceptual framework and its various use
cases. The digital twin concept involves the creation of a dynamic and interactive
virtual model that emulates the behaviour of its physical counterpart in real-time. By
combining data from sensors and manual inputs, the digital twin becomes an accurate
and responsive representation of the bioprocess. This virtual replica serves as a powerful
tool for various tasks. We describe a comprehensive end-to-end digital twin that
contains upstream, downstream, and formulation unit operations to provide an overall
picture of the process to end users. There are many tasks that can utilize a digital twin.
We group all these tasks into four categories, namely process characterization, process
optimization, process monitoring, and process control. Therefore, the envisioned digital
twin consists of four key components each dedicated to one category.

We define the digital twin as a process model that acts as the digital replica of the
physical process. This digital replica is close enough to reality that it can be used for
process characterization, control, monitoring, and optimization. The envisioned digital
twin is connected to the physical process in real-time in a bidirectional way. It receives
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data from the physical process in an online manner and provides feedback either
directly or indirectly to the physical process via automated or manual actions. This
information transfer occurs via the data and action units as described in Section 3.2.
Knowledge about specific tasks and unit operations can be incorporated via model
plug-ins as described in Section 3.3

Sensor Data

Manually
Collected Data

Data Unit

Characterization

Automated Actions
(short-term)

Manual Actions
(long-term)

Action Unit

Real-world Process

Digital Twin

Model Plugins
Mechanistic

Data-driven

Hybrid

Optimization

MonitoringControl

Fig. 3: Proposed Framework

3.1 The Digital Twin
3.1.1 Process Characterization Component
Understanding the inherent characteristics of each unit operation is the primary focus
of the Process Characterization Component. It involves understanding and quantifying
the behaviour of a bioprocess under various conditions to ensure consistent and
reproducible production of bioproducts. This is usually done by defining critical process
parameters (CPPs) and critical quality attributes (CQAs). CQAs are the attributes
of the final product that determine its quality, safety, and efficacy. CPPs are process
parameters that have a significant impact on CQAs. The effect of CPPs on CQAs is
commonly done via a procedure called the design of experiments (DoE). This involves
systematically running experiments each with varying parameters. This process can
be expensive, so, the digital twin facilitates DoE by providing a detailed, real-time
simulation that allows for in-depth analysis. Engineers and operators can explore the
digital twin to gain insights into the underlying dynamics of the process, identifying
the most likely CPPs, and specific ranges for each CPP. This involves utilizing models
to characterize raw material behaviour, product formation kinetics, and scalability. For
this component, it is beneficial to have data coming from various process conditions to
capture the underlying dynamics of the physical system.
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3.1.2 Process Optimisation Component
When the dynamics of the process are sufficiently understood in the characterization
component, this knowledge can be used to improve the process. The Process Opti-
misation Component identifies opportunities for process improvement and efficiency
enhancement. This involves leveraging the digital twin for scenario analysis, what-if
simulations, and optimization strategies to improve overall process performance. Below
are some example scenarios for process optimization.

• Scenario 1: Raw Material Variability. Simulation of variations in raw material
quality provides insights into critical control points, allowing for the development
of strategies to mitigate the effects of variability.

• Scenario 2: Equipment Downtime. Simulating scenarios with equipment failures
allows the assessment of the impact on overall production timelines, aiding in the
design of robust manufacturing schedules and maintenance plans.

• Scenario 3: Process Parameter Optimization. The digital twin supports the opti-
mization of process parameters to maximize product yield and quality. Scenarios
involving changes in feeding strategy, temperature, pressure, or flow rates can be
simulated to identify optimal operating conditions.

Using process mining simulation engines, it is possible to simulate the above
scenarios and confirm hypotheses in-silico before running costly wet lab experiments.

3.1.3 Process Monitoring Component
Continuously monitoring and assessing the ongoing manufacturing process is the role of
the Process Monitoring Component. This includes employing sensor data and real-time
analytics to detect deviations, anomalies, or potential issues during the execution of the
physical process. In this component, the digital twin serves as a live dashboard, offering
a comprehensive overview of the ongoing bioprocess. By continuously comparing
the digital twin’s behaviour with real-time sensor data, operators can quickly detect
anomalies, deviations, or inefficiencies, allowing for proactive intervention before issues
escalate. A wide range of process mining techniques can be applied in this setting. For
example, conformance checking can be used to determine if the ongoing bioprocesses
are progressing according to guidelines. Predictive process monitoring can also be
used to predict the conditions of the bioprocess in the near future. Having access to
prediction allows for proactive intervention in the process which is done in the control
component described next.

3.1.4 Process Control Component
Process control in the context of bioprocessing refers to the systematic management
and regulation of various parameters, conditions, and variables within a production
process to ensure that it operates within desired specifications. It involves monitoring
taking the results of the monitoring component and making adjustments in real-time
to maintain optimal performance. The real-time synchronization between the digital
twin and the physical process enables operators to make informed decisions promptly.
With the ability to predict potential issues and simulate different control strategies, the
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digital twin empowers operators to optimize process parameters, improve efficiency, and
minimize downtime. Below the main aspects of the control components are described:

• Real-Time Monitoring: The process control component closely collaborates
with the process monitoring component. The control component receives the
results of the monitoring component and uses prescriptive process monitoring
methodologies to determine actions based on the monitoring results.

• Feedback Control Mechanisms: The digital twin facilitates the implementation
of feedback control mechanisms. By comparing real-time data with the expected
or optimal conditions, the digital twin can automatically trigger adjustments
to operating parameters. The digital twin also serves as a testing platform for
various control strategies, before they are applied to the physical bioprocess.

• Optimization Algorithms: The optimization component discovers optimal
parameters and conditions offline. This knowledge can be used by sophisticated
algorithms embedded in the control component to optimize process param-
eters based on real-time data. This adaptive optimization ensures that the
manufacturing process operates efficiently under varying conditions.

• Integration with Control Systems: The control component needs to seamlessly
integrate with existing process control systems. This integration enhances the
capabilities of traditional control systems by providing a more detailed and
adaptive understanding of the manufacturing environment.

By continuously learning from data and adapting to changing conditions, the digital
twin contributes to a culture of continuous improvement. Insights gained from the
digital twin can inform adjustments to standard operating procedures, leading to
enhanced efficiency and product quality.

3.2 Data and Action Units
The data and action units are the links between the physical and virtual systems. The
digital twin is built using data collected from the real process and in turn, it provides
input to the real process. All communication from the physical process to the digital
twin goes through the data unit and from the digital twin to the physical system
through the action unit.

3.2.1 The Data Unit
Traditionally data from bioprocesses has been collected manually by scientists. Typically
a daily sample is taken and analyzed offline. However, in recent years, more efficient
and frequent techniques for sampling have been introduced via sensors. These sensors
monitor media conditions such as pH, temperature, and dissolved oxygen, as well as
cellular processes and feed media addition. The main benefit of using sensors is that
they collect process information in or near real-time, making it possible to sync the
digital twin with the physical process constantly.

Another category of sensors, known as soft sensors, may be used to collect infor-
mation from the bioprocess. One popular soft sensing technique that is successfully
used in bioprocess industries is Raman spectroscopy [19, 31]. Raman can be used to
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measure a variety of process parameters and variables, such as cell profiles, nutrients,
and metabolites.

The data unit collates information from sensors and offline measurements and
converts them to event logs. The event log can then be used to discover the process that
serves as the digital twin. As more information arrives from the sensors, the event log is
expanded and the digital twin is rebuilt to keep the it synced with the physical process.

3.2.2 The Action Unit
The action unit handles the information flow from the digital twin to the physical
process. This information can be in the form of new experimental designs resulting
from the characterization component of the digital twin, or the control strategy derived
from the process control component. Some information is fed directly to the physical
process, such as the parameter values coming from the control component. But other
information such as the experimental design influences the physical process indirectly
via human actors. The information communicated to the physical process directly must
be transferred in real-time to ensure interventions are executed in a timely manner
while also adhering to strict guidelines defined in the design of experiments stage.

3.3 Model Plug-ins
Here, we describe the relationship between prior knowledge about specific unit opera-
tions and the proposed digital twin. The digital twin should utilize various modelling
techniques to represent the behaviour of the microorganisms and their interaction with
the cell culture environment and materials. Three main paradigms of modelling are
typically used in the literature: 1. Data-driven modelling, 2. Mechanistic Modelling,
and 3. Hybrid Modelling.

In the upstream steps, machine learning algorithms analyze historical data on raw
materials, fermentation, and cell culture. These data-driven models predict variables
such as cell growth, nutrient consumption, and metabolite production based on histor-
ical patterns. Mechanistic models delve into the biological intricacies of fermentation
and cell culture, capturing the underlying kinetics and dynamics of microbial growth,
substrate utilization, and product formation. The hybrid modelling approach blends
data-driven and mechanistic components. For instance, a machine learning model can
be used to empirically estimate the parameter values of mechanistic equations based
on data.

In the downstream phase, data-driven models come into play to predict product
yield, purity, and quality attributes. These models integrate historical data on equip-
ment performance, process conditions, and product characteristics. Complementing
this, mechanistic models simulate the physical and chemical processes involved in
downstream operations, considering mass transfer, chromatography column dynamics,
and filtration kinetics.

These models, regardless of which paradigm is used, typically describe one unit
operation and are only concerned about optimizing one step. However, such models
do not provide information about how each unit operation affects the subsequent ones,
and global optimization across all steps is still under-explored. The end-to-end digital
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twin serves as an overall platform where the entire process can be studied with various
modelling techniques. For instance, such models can be used to generate data under
various conditions. This generated data can be the input to the digital twin to see the
impact of each model on the process as a whole.

4 Challenges and Guidelines
Each unit operation in the process gives rise to specific challenges. There are also
challenges associated with the end-to-end process. In this section, we provide an
overview of some of these challenges and propose directions for future research to
tackle them.

4.1 Building Process Models from Real-valued Data
Traditionally, BPM and process mining techniques have been developed to manage
organizational workflows. Workflow models typically deal with discrete steps carried
out by actors and involving one or many objects. As a result, most process mining
techniques are equipped with ways of dealing with categorical sequences, and not
continuous numeric values such as multidimensional time series. Bioprocess data,
whether collected manually or via sensors, has a unique structure that workflow models
alone are not sufficient to handle. Similar to a typical organization’s workflow, a
bioprocess involves activities carried out by actors and involves objects. However, these
actions are fixed to comply with strict regulatory and safety requirements. Therefore,
in an event log from a bioprocess manufacturing facility, there are few process variants
and any suggested change to the workflow by the digital twin needs to go through
a comprehensive and lengthy regulatory approval. In such a setting, conformance
checking – one of the main operations in process mining – may be used to detect any
deviations from the regulatory requirements.

One major challenge in bioprocess development is that such processes involve living
microorganisms. These organisms’ behaviour can be unpredictable and difficult to
control. Also, determining the best conditions for their performance is non-trivial.
The behaviour of these living cells is captured by data collected manually or from
sensors installed in the equipment. Typical sensor measurements consist of process
parameters which are fixed throughout a specific unit operation and process variables
which are subject to change. These data are in the form of multidimensional time series
taken at fixed time intervals depending on the sensor type. One major challenge when
representing the bioprocess digitally using a BPM notion of process is that the sensor
data needs to be converted into event log format since process models are formed using
discrete activities, actors, or objects. This is a significant challenge because if not done
correctly, important information may be lost in the process of conversion to event logs.
One possible solution is to use unsupervised clustering algorithms to determine latent
activities in the measurements, as done in [32].
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4.2 Generating Control Signals
As mentioned in Section 3.1, the process control component of the digital twin is used
to test control strategies before it is applied to the physical process. One concern
is that the control strategy heavily relies on the quality of the model on which the
digital twin is built. Low-quality data and models can lead to sub-optimal control
decisions. So, a major challenge is to ensure that the model is of sufficient quality to
be used in control decisions. To address this challenge, a rigorous quality assurance
procedure must be implemented that ensures that the output of the digital twin meets
the standards and requirements.

The other challenge of generating control signals relates to the previous challenge
regarding the digital twin being discrete. Typically control signals specify fine-grained
numeric values for controlled process parameters. However, a discretized digital twin
can only recommend a range of values. One way to overcome this challenge is to
combine it with a numerical model that can determine the exact value of the controlled
parameter after the process model has determined the range.

4.3 Shifting from Batch Processing to Continuous Processing
Currently, the majority of bioprocesses are batch processes. This means a batch of
material goes through the unit operations serially. Each batch has its unique identifier.
In the context of process mining, each batch can correspond to a case. However, there
has been a gradual shift towards continuous manufacturing due to its benefits of
improving product quality and processing times [33]. For such continuous processes,
one challenge is to identify the notion of case identifier as the material continually
enters the processing reactor and its waste and unwanted material are continuously
removed. This problem can be addressed via segmentation techniques in the robotic
process mining literature.

4.4 Determining Simulation Fidelity
Another main challenge in building a digital twin of bioprocesses is to determine the
fidelity of the models built into the digital twin. Simply, we need to determine how
close the digital twin should be to the physical process. This depends on what the
digital twin is being used for and on the unit operation being modelled. Some tasks
require higher fidelity while for other tasks low-fidelity models might suffice.

To address this challenge, the first step is to review industry standards for each
unit operation and for the overall end-to-end process. Also, error bounds must be
established for each task and the digital twin’s performance should be assessed against
these bounds.

4.5 Incorporating Models of Specific Unit Operations
We might wish to use the knowledge gained from other modelling techniques that
describe the bioprocess via the model plugins component of the framework. There
is extensive literature on using data-driven, mechanistic, and hybrid techniques to
model specific aspects of the process. While we envision the end-to-end bioprocess

13



as a process model, some specific tasks will benefit from using the models that have
been developed in the literature. So a key challenge is to identify opportunities and
frameworks for blending such existing models with the end-to-end process model.

4.6 Degree of Hybridization
High quality data availability is a major challenge in modelling bioprocesses. Due to
the tight regulatory controls placed in bioprocess industries, the data coming from
such facilities do not contain many variations. This makes creating what-if scenarios a
challenging task. Users might wish to use the digital twin to analyze what will happen
if something goes wrong. For example, how would the developed control strategy
perform if there is a power outage? Or how should the actors proceed if one of the
critical process parameters goes out of the established bounds? If the digital twin
solely relies on data, it might not perform optimally unless a similar situation has
occurred in the past. In such situations, it might be beneficial to incorporate process
knowledge from mechanistic models. One way to achieve this is to generate data from
such mechanistic models and discover the digital twin from the generated data. This is
also not optimal since existing mechanistic models are too simple to model all aspects
of the process. Therefore, the most obvious solution is to use a combination of real
data and the generated data from mechanistic models. Nevertheless, the challenge
remains, to what degree should these data be combined? Which process behaviours
should be coming from real data and which from the generated data?

4.7 Scale-up
Much of the existing models and knowledge about bioprocesses come from lab experi-
ments. Before a product is manufactured at a large scale, smaller lab and pilot-scale
experiments are conducted and much of the existing data comes from such experiments.
It is reasonable to assume that the envisioned digital twin will also be developed using
small-scale data since manufacturing scale data is scarce. So another challenge that
needs to be addressed is the scalability of the digital twin. Is a digital twin developed
by data coming from a five-litre bioreactor going to accurately model a five thousand-
litre reactor? Such questions should be answered using a pilot scale experiment for
the digital twin. Once the safety of the digital twin on all other aspects is determined,
it should be trialled in a large manufacturing facility before it can be deployed for
regular use. Also, the mechanics of the larger environment should be incorporated
into the process model to account for variations that might occur due to the larger
equipment and material used in manufacturing.

4.8 Unit Operation-Specific Challenges
Each unit operation comes with its own specific challenges. Depending on the level of
detail included in the digital twin, we might need to model individual unit operations.
In the upstream phase, the microorganisms used in the bioprocess are grown in a
culture and are encouraged to make a target product by tightly controlling the culture
environment. The upstream is the step where the process heavily relies on the behaviour
of the living microbes to achieve the desired outcome. So this step has a high level of
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uncertainty and a complicated underlying behaviour which is difficult to capture by a
model. On the other hand, the downstream steps rely less on living organisms and
more on efficient use of equipment and understanding of fluid dynamics to successfully
carry out the filtrations required. When designing the digital twin for the upstream
steps, it is important to include uncertainty quantification techniques and investigate
how the level of uncertainty can impact the downstream steps. For the downstream
steps, the digital twin benefits from an object-centric approach where all the equipment
and materials are central to the design of the process model and their impact is well
established.

5 Case Study with a Pharmaceutical Company
In this section, we demonstrate the application of our envisioned digital twin framework
via a case study with a large pharmaceutical company in Australia. This case study
focuses on the monitoring component of the digital twin. In the first instance as a
proof of concept, we focus on a single unit operation rather than the entire end-to-end
process. However, the unit operation we have chosen is the production bioreactor, a
very complex step in the bioprocess. In this case study, we show how monitoring of
bioprocess parameters and quality attributes is possible via existing process mining
solutions.

5.1 Soft Sensors and Bioprocess Monitoring
During the bioreactor phase, monitoring various process parameters and quality
attributes is essential. This is because monitoring these parameters provides insights
into cell activity and how the bioprocess unfolds. Typically, nutrients, metabolites,
protein concentrations, and information about cell growth are monitored in real-time
during bioreactor runs. Monitoring these parameters allows scientists to make crucial
decisions on how to intervene in the process according to indications of cell behaviour.
In particular, predictive monitoring is especially beneficial in this scenario because
it allows for preemptive measures to be taken and for proactive interventions to be
possible. For example, consider the metabolite lactate. It is a natural byproduct of
cell activity when it is producing a target protein. Small amounts of lactate in the cell
culture are normal. However, excessive levels of lactate acidify the cell culture medium
leading to low overall performance [34]. So, lactate levels are constantly monitored
during bioreactor runs, and if they start to go high, actions are taken to reduce them.
Predictive monitoring of lactate concentrations allows such actions to be taken before
lactate reaches undesired levels.

Traditionally, monitoring has been carried out by manually collecting samples
from the bioreactor and analyzing the samples offline. However, process analytical
technologies (PAT) tools are becoming increasingly common to measure monitored
parameters during various stages of the bioprocess, including the bioreactor. One
subset of such tools is spectroscopy. Various spectroscopy techniques have emerged
in the bioprocessing domain, allowing for precise and real-time monitoring of process
parameters. A comprehensive review of spectroscopy use cases in the bioprocess
industries is presented in [19].
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Raman spectroscopy is a PAT technique used in bioprocess development for various
purposes. During the bioreactor phase, it is used for real-time monitoring of critical
process parameters such as glucose, lactate, glutamine, glutamate, ammonia, and
viable cell density (VCD) [35]. To achieve this, Raman probes are inserted into the
bioreactor. These probes collect spectral measurements at specific time intervals (every
fifteen minutes in our experiments). Spectral measurements need to be correlated to
analytical measurements via statistical or machine learning models. These models are
calibrated on manually collected measurements or data coming from other sensors.
The calibration step is typically done offline and then the model is deployed for real-
time monitoring. Once the calibrated model is applied to spectral measurements, the
concentrations of the aforementioned parameters can be estimated in real-time. These
estimates form a multivariate time series as they are concentration values collected at
a fixed time interval.

5.2 Predictive Process Monitoring
The calibrated model provides current concentration values from spectral data. But
it does not provide predictive capabilities. So, for predictive monitoring of critical
process parameters, predictive techniques can be used to estimate future concentration
values. Since the concentration values are time series, one natural way of predicting
future values is time series forecasting. We can find various time series forecasting
techniques applied in the bioprocessing domain, particularly for forecasting critical
process parameters during the bioreactor phase [36, 37].

There are a few limitations in applying time series forecasting techniques for
predictive monitoriong. First, these techniques do not incorporate the notion of a case.
The input type assumed by time series forecasting methods does not account for the
fact that measurements might come from independent experiments. For example, if we
have glucose concentrations < a1, a2, . . . , at > for bioreactor A, and < b1, b2, . . . , bt >
for bioreactor B, and we wish to predict at+1 and bt+1, we cannot pool both sequences
together as input to the forecast model. We need to train separate models for each
bioreactor. This means that each model needs to be trained using data from the initial
stages of the bioreactor and then applied to get predictions for the remainder of the
bioreactor run. This is not optimal because we cannot use patterns and knowledge
gained from previous bioreactor runs in the prediction task.

Second, the accuracy of the forecasts typically decreases as the prediction horizon
increases. For instance, suppose that we train the model on glucose concentration
values of the first two days. We can get highly accurate forecasts for day three. But the
forecasts may be highly unreliable for day thirteen. This means that to get accurate
results, models need to be updated at least every few days for each bioreactor run.
This can be costly and inefficient.

In this case study, we propose using the notion of a process as it is defined in the
Business Process Management and Process Mining communities for the predictive
monitoring task. Given data collected using Raman spectroscopy, we aim to predict
glucose and lactate concentrations in the next time step. To achieve this, we follow
the pipeline outlined in Figure 4.
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Fig. 4: Predictive Bioprocess Monitoring Pipeline: The activities shown in blue are
the pre-processing steps described in Section 5.2.1, the activities shown in green are
the process conceptualization steps described in Section 5.2.2, and the activities in
yellow are the process monitoring steps of Section 5.2.3

5.2.1 Data Pre-processing
The raw Raman spectra do not include the substance concentrations. Several pre-
processing steps need to be carried out to obtain concentration values. The first
step is clipping. Clipping involves removing data points that are outliers or contain
artifacts or other noise. This step helps to clean the spectrum in improve subsequent
analyses. The second step is smoothing. Smoothing techniques such as moving average,
Savitzky-Golay, or Gaussian filtering, are applied to reduce high-frequency noise while
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preserving the spectral features. Smoothing improves signal-to-noise ratio (SNR) and
enhances the visibility of peaks corresponding to molecular vibrations (which helps to
distinguish concentrations of different substances in the cell culture). The third step,
namely baseline subtraction, is performed to remove the background signal caused by
fluorescence, Rayleigh scattering, or other non-resonant processes. There are various
of methods for doing this such as polynomial fitting, asymmetric least squares, or
adaptive iteratively reweighted penalized least squares (airPLS). Baseline subtraction
reveals the true spectral features and facilitates accurate peak identification and
quantification. Next, in the fourth step normalization is applied to adjust for intensity
variations between spectra caused by factors such as sample concentration, instrument
settings, or laser power fluctuations. Common normalization techniques include area
normalization, maximum normalization, vector normalization, or probabilistic quotient
normalization. But for Raman spectra in particular vector normalization is preferred.
Normalization ensures that spectral comparisons are not biased by differences in overall
intensity and improves the consistency of analyses across samples. It should be noted
that normalization should be done after baseline correction [38]. The last and fifth
step is dimensionality reduction. In this step, techniques such as principal component
analysis (PCA) or partial least squares (PLS), are employed to reduce the number of
variables while retaining most of the spectral information. PCA identifies principal
components that capture the majority of variance in the data, enabling visualization
and interpretation of spectral differences. PLS regression combines dimensionality
reduction with regression analysis to model relationships between spectral data and
sample properties, facilitating quantitative analysis and predictive modelling. PLS is
often used to calibrate a model that maps spectral features to concentration values [35].

5.2.2 Process Conceptualization
Once concentration values are estimated from the Raman spectra, the next step is
to conceptualize these readings as a process. Conventionally in the buainess process
management and process mining communities, a process is a sequence of activities
involving actions and objects to achieve an outcome. This definition cannot be directly
applied to the bioprocess. Indeed, bioprocesses do involve actions performed by actors
(e.g., scientists or automated controllers), but another important aspect of the biopro-
cess, especially during the bioreactor phase, is the reaction of the living microorganisms
(cells) to the actors’ actions. These cellular reactions are central to the bioprocess and
determine its success or failure. However, they are considered latent processes as their
behaviours and transitions are currently not fully understood. Consequently, these
latent processes are characterized by measurements of various substances, such as
nutrients, metabolites, amino acids, and cell data. For example, glucose is an essential
nutrient for cell metabolism. By monitoring glucose levels, the rate of cell metabolism
can be estimated. If glucose levels are going down rapidly, it indicates that the cells
are metabolizing fast and using a lot of glucose.

To conceptualize the latent bioprocess, the various measurements collected manually
or via sensors (e.g., Raman sensors) need to be incorporated into the conventional
definition of a process. The conventional business process has activity labels, whereas
we have time series measurements. Therefore, to create activity labels for the bioprocess,
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we use clustering. The benefit of clustering is that it is unsupervised, so no prior
knowledge is required to construct the labels. Also, clustering captures the natural
shape of the data, so the discovered activities correspond directly to the collected
measurements, and by extension, to the behaviour of the cells. Since timestamps
already exist as part of the measurements, their translation into the conventional
process is trivial.

Another important aspect of business processes is the case identifier. Each activity
is paired with an identifier unique to the process instance it belongs to. In this case
study, each bioreactor run is an independent instance of the bioprocess. Each run is
characterized by the vessel used, the experiment it belongs to and the project that
contains that experiment. Therefore in this setting, the case ID is a tuple of the
following form: (project_ID, experiment_ID, vessel_ID).

Using the above-mentioned methods, we can construct event logs consisting of case
IDs, activity labels, timestamps, and optional case attributes. Additional information
can be added to enhance the event log. For example, information about the initial
conditions of the bioreactor, or instruments settings can be added to the event log as
case attributes. In this case study, we use Raman probe settings as case attributes.

5.2.3 Predictive Model Training
Once the bioprocess event log is created, the next step is training a predictive model
to predict the next activity (cluster) given a prefix. Within the area of process mining,
predictive process monitoring is experiencing a surge in activity, with numerous new
techniques being proposed every year. These techniques use a variety of machine
learning and deep learning methods for predicting various components of the process,
with next activity prediction being one of the main focuses.

Predicting the next activity in this setting is not sufficient. This is because the
predictive monitoring method only predicts the next cluster, but not the concentra-
tion value. In many cases, external actors of the bioprocess make decisions based on
concentration values. Moreover, many control strategies are implemented with con-
centration values as input. Therefore, the predicted cluster needs to be converted to
concentration values. To achieve this, we consider the predicted concentration to be
the average value of the given substance in the predicted cluster:

Ys|c := 1
n

n∑
i=1

si (1)

where Ys|c is the predicted concentration of substance s given cluster c, and si are
concentration values of substance s in cluster c, and n is the number of data points in
cluster c.

5.3 Experimental Setup
We apply the above methodology to a real-life dataset from a pharmaceutical company.
The dataset consists of 35 bioreactor runs for the production of monoclonal antibodies.
The bioreactor runs comprise different projects and different experiments within the
same project. For each bioreactor, Raman spectra are available with a sampling
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frequency of 15 minutes. Moreover, we use daily manually collected samples to calibrate
the model mapping spectra to concentration values.

We performed the pre-processing steps using the following methods. Clipping is
carried out to include spectra only within the range of 600-2000. Smoothing is done
using a one-dimensional Gaussian filter and baseline correction with the airPLS method.
After that, vector normalization is performed. To obtain concentration values, a PLS
model is trained using spectral data as input and the daily concentration values of
glucose and lactate as output.

Once glucose and lactate values are obtained at 15-minute intervals, we discover
latent cellular activities via clustering. We use two common clustering methods to
investigate the effect of clustering performance on the overall performance. The
methods used are Kmeans and DBSCAN. We select the value of k for Kmeans
through various strategies and compare the results. We use the elbow method and the
Bayesian information criterion (BIC). In addition, we use the same number of clusters
automatically discovered by DBSCAN.

We use a neural network to perform predictive monitoring. We use an embedding
layer to represent the traces as a fixed-length vector of size 50. This vector is the input
to an LSTM layer consisting of 100 units. It is then followed by a dense layer consisting
of n units with n being the number of identified clusters. The softmax activation
function is used to get probabilities for each cluster.

We use leave-one-out cross-validation (LOO-CV) to evaluate model performance.
This means that for each training iteration, one of the bioreactors is reserved as the
validation set, and the rest of the data are used in training. We report the average
performance across all bioreactors. The clustering results are evaluated visually, as the
input is two-dimensional (glucose and lactate).

We compare our results with time series forecasting since predictive monitoring
is done via this approach in the bioprocessing literature [36]. For each bioreactor,
a separate forecasting model is trained on the first two days of glucose and lactate
concentrations, and forecasting is done on the subsequent days until the end of the
bioreactor run.

5.4 Results
To evaluate the performance of the PLS model, we calculate the mean squared error
(MSE) and r2 score for the validation set and compare the results with a random
regressor. Table 1 shows that the PLS model significantly outperforms the random
classifier, and hence it can be used to obtain concentration values from the Raman
spectra.

MSE R2 score
PLS 23.53 0.48
Random
Regressor 48.1 -0.13

Table 1: Performance of the PLS model
in terms of MSE and R2 score

Figure 5 shows the results of the elbow
method and the Bayesian information cri-
terion for selecting the number of k for
Kmeans. It can be seen that using the elbow
method, the optimal number of clusters is
3, whereas the BIC shows that performance
improvement diminishes after 14 clusters. 3
and 14 were picked as possible values for the
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Fig. 5: (a) The elbow method, showing the silhouette score for different numbers of
clusters (higher is better). (b) The BIC score for different numbers of clusters (lower
is better).

number of clusters in Kmeans. Also, using
DBSCAN, the number of clusters was auto-
matically selected as 8. For comparison purposes, we used 8 clusters for Kmeans as
well. Figure 6 shows the clustering results using DBSCAN and Kmeans using 3, 8, and
14 clusters.

It can be seen visually that DBSCAN best captures the shape of the data and
the clusters are well-separated. But in Kmeans the cluster boundaries seem arbitrary.
Nevertheless, we proceed to build event logs using both methods and perform predictive
monitoring. Table 2 shows the results of both predictive monitoring using our proposed
approach (with various clustering configurations) and time series forecasting. The
metrics used are mean absolute error (MAE), means squared error (MSE), and root
mean squared error (RMSE).

5.5 Discussion
It can be seen from the results in Table 2 that overall the proposed approach outperforms
the time series baseline for both glucose and lactate. It empirically confirms the
hypothesis that using the notion of a process as part of prediction can improve results.
For glucose, the best results in terms of MSE and RMSE are obtained using Kmeans
with 3 clusters, even though clustering performance is below DBSCAN. This is because
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Number of
Clusters

LSTM
Accuracy

Glucose
MAE

Glucose
MSE

Glucose
RMSE

Lactate
MAE

Lactate
MSE

Lactate
RMSE

PPM with
DBSCAN 8 0.78 4.33 29.92 5.46 4.20 31.65 5.62

PPM with
Kmeans 8 0.86 3.04 16.71 4.08 6.62 45.93 6.77

PPM with
Kmeans 3 0.95 3.05 16.15 4.02 5.84 51.03 7.14

PPM with
Kmeans 14 0.79 2.8 16.38 4.04 5.0 44.49 6.67

Time series
baseline - - 2.94 31.64 5.63 10.63 379.59 19.48

Table 2: Comparison of results using the proposed approach and time series forecasting.

(a)

(b)

Fig. 6: (a) Clustering results using Kmeans with 3 and 14 clusters. (b) Clustering
results using DBSCAN and Kmeans with 8 clusters.
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the LSTM performance is significantly higher when using 3 clusters. As we have limited
data available (35 bioreactors), more complex traces are harder to predict. In the case
of glucose prediction, even though clustering quality is not optimal, it is sufficient to
achieve superior performance to other methods because the correct cluster is identified
the majority of the time. Also, it should be noted that glucose levels are relatively
stable during the bioreactor run as shown in Figure 7a.

(a)

(b)

Fig. 7: (a) Example of glucose levels over time. (b) Example of lactate levels over time.

The best results for lactate in terms of MAE, MSE, and RMSE are obtained using
our approach with DBSCAN. It can be seen that across all clustering configurations,
the performance is significantly higher than the baseline. This can be explained by the
fact that lactate levels fluctuate during the bioreactor run. So the time series model
trained on the first two days of the run does not account for this non-stationarity
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and so, the performance deteriorates rapidly and significantly as time progresses. This
more complex pattern of lactate levels requires higher clustering quality, meaning that
the clusters should more faithfully capture the natural shape of the data. This is why
the best performance is observed using DBSCAN.

Overall, it can be seen that for both glucose and lactate, the performance improves
over the baseline across all metrics regardless of the choice of clustering method. This
demonstrates that incorporating the notion of process in the predictive monitoring
task is crucial. Moreover, other aspects of the process could be incorporated into the
event log to improve results. For example, we can add human activities to traces to
account for sudden fluctuations in concentration levels. The sudden decrease in lactate
shown in Figure 7b may be due to an intervention by a scientist or control system.
Having this information in the trace is likely to improve the prediction results.

It should be noted that the quality of the predictive monitoring approach relies
both on the prediction model and the choice of clustering method for more complex
tasks. Since data in this domain is expensive to acquire, event logs can often be small.
So one important area for future improvement is to design new methods that can work
with small data.

6 Conclusion
In this book chapter we presented a novel digital twin framework for understanding,
optimizing, monitoring, and controlling bioprocesses. Digital twins have seen a surge in
attention in the business process management and bioprocess development communities.
The definitions and functions of the digital twin are varied across disciplines. We
discussed how to bridge the gap between these two related communities and present a
framework to develop digital twins of bioprocesses using concepts and methods in the
business process management and process mining fields. We discussed the challenges
of achieving the digital twin and provided guidelines for those challenges. It should
be noted that although the proposed framework is geared towards bioprocesses, it
applies to other continuous processes that are characterized by regular measurements.
Indeed any process with similar data types can benefit from this framework which
could include other forms of manufacturing.

Through a case study conducted in collaboration with a prominent pharmaceutical
company, we have demonstrated the practical applicability and tangible benefits of our
proposed framework. The results of the case study showed that through an approach
based on the proposed framework, we can achieve high prediction performance in the
process monitoring task compared to a time series forecasting baseline.

Looking ahead, further research into the application of the proposed framework
is warranted. In the future, we plan to address the challenges mentioned in the book
chapter and offer concrete solutions to them.
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